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Plane and axisymmetric contact problems for a rough layer are studied in a non-
linear formulation. In the particular case of a very thick layer, the principal
term of the kernel under consideration in the nonlinear integral equation agrees
with the kemel examined in [1,2). The solution of the problems reduces to
investigating nonlinear integral equations of Hammerstein type, for which we
use successive approximation, Numerical results are presented which show the
change in the nature of the pressure distribution under the stamp when roughness
of the foundation is taken into account,

Contact problems of the theory of elasticity for rough bodies were considered in a
linear formulation in [3 —5]. Shtaerman first obtained the equation of the plane con-
tact problem for an elastic rough body on the basis of an agsumption about the proport-
ionality of the additional local displacements because of the spreading of the roughness
in the contact zone by the normal pressure, However, as results of a number of exper-
imental studies show [6, 7], the closure of the rough bodies making contact is proport-
ional to the pressure to the power a (a <{ 1) because of the deformation of the micro-
projections, In such a formulation some plane contact problems were examined in [1,
2,8}, An approximate solution of the axisymmetric problem is presented in [8].

1. Let us consider the plane contact problem for an elastic rough strip| r | < oo,
0 <<y < h. A rigid stamp, the shape of whose surface is given by the equation
y = g (%), (g (0) = 0),is impressed on the upper boundary of the strip by a force P.
Outside the contact section (—a, a), the upper boundary of the strip is not loaded.
Two cases of strip support are investigated in parallel:
1) The strip lies on a rigid foundation without friction; in this case the boundary
conditions have the form (§ is the settlement of the stamp)

Ty (2,0) =0, v(z,0) =0, |z| <o
Tey (2, ) =0, 0y (2, ) =0, a<|z| < o0
Ty (2, R) =0, v(z, B) = g (@) + 8, |[z]|<a

(1.1

2) The strip is fixed rigidly along the foundation; then the conditions on the line
of discontimiity y = O change, taking the form

u({z,0) =0, v(zr,0 =0

Let us consider the normal displacements v (z, h) of the boundary of the elastic
strip to be comprised of the displacement V; due to the strain of the microprojections
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defined as follows:
n=Alp(@)* 450 (1.2

Here p (x) is the contact pressure distribution function, A is a coefficient charac-

terizing the deformation properties of the rough layer, and @ is an exponent found on

the basis of a reference surface curve (@ < 1). Moreover, elastic displacements
vy of the strip occur, which are deterrgxined on the basis of the boundary corditions

according to [10 - -
rding to [10] v= 202 (k(232) p@a (13)
- o
The function k (f) hasthe form % (f) = S L iu) cosutdu (1.4
0
The specific form of the function L (u) depends on the boundary conditions.
For problem 1 Lu) = % (1.5)
2% sh 2u — 4
For problem 2 L () = 2uch2u+:u3+l;+u’ y %=3—4v (1.6

Let us write the condition for contact between the stamp and the strip and the equi-
librium condition in dimensionless coordinates. To do this, we introduce the notation

n=igt n=g A= (L7
BE) =g gla@a—1) 4 =g [20Z9]
2(1.—.1;2)

P = =F L pla@n—1)], P=iZ2p
We then obtain

1
§EIA (= 21 P18 + 4; [P2 (@))% = g2 (@) +1 (1.8
1]
1
Py = { pi(z)) dy (1.9)
(43

Therefore, the solution of the problem formulated reduces to solving the nonlinear
integral equation (1. 8) under the condition (1. 9), whereupon the pressure under the
stamp and the settlement of the stamp are determined.

Equation (1. 8) is an equation of Hammenrstein type, Let us reduce it to canonical
form. To do this we introduce the new function

P () = A, Ip; (z)l* — g, (z) — 1 (1. 10)

Then

1
A7 SRIME— 2] [0 + g0 () + MPledt +p(e) =0 (LID

1
Py = 47 {19 (z0) + g1 (@) + M)/ dzy
0



106 I. G. Goriacheva

Successive approximations can be used to solve the equation (1. 11) of Hammerstein
type. For instance, setting g {z,} = 0 and successively

1
Prog (1) = — AT S B[A (€ — 2] [9a () + 1 (6) + M/ dt
[}

Let us prove compliance with the sufficient conditions for convergence of this
methed for (1. 11).

1) The kemel & (f) of the integral equation (1,11) can be represented in the
following form by taking (1.4) — (1. 6) into account

E@)=—In|t|+F@), 0K|ti< o
where F (f) is a continuous function. The kemel % (I} evidently belongs to the
class L,.
2) The fanction f(f, u) = A% lu + g, () 4 n}V® uniformly satisfies a
Lipschitz condition of the form

[FQ@, uy) —F (8 ug) | <e(t)|uy — ug| (1.12)

in the range of variation of the function u = 1 (z;). In fact, since the normal pre-
ssure p, (r,) is non-negative, then

—& (@) —n<u<0
follows from (1, 10) and the properties of the kemel in (1. 11).
The derivative 9f (£, u) / 6u = a4,V [u + g, () + n]/*1 is bounded
by the value a~l4;-¥e[g, (1) + nlh/et (0 < @ < 1) in the range of variation
of the argument u ., Hence, the Lipschitz condition (1,12) is satisfied in which

¢ () = = AT (g1 () + et
3) The function f (¢, 0) = A,"1/e [g, (£) + mjve, evidently belongs to the
class ng
Upon compliance with conditions 1) — 3) the method of successive approximations
converges [11] if only the parameters of the problem satisfy the inequality

1 1
a2 47 X (g1(2) + nJp/l>-2 {S E* (A (¢ — 2)] dt} da<1 (1.13)
] 14

Upon compliance with condition (1. 13), the sequence of functions {n (z,)} has
a limit which will indeed be the unique solution of (1. 11).

Let us prove that this solution is unique. Let us assume the oposite, i, e., that
two solutions of (1. 11) exist: ¥ (1) and ¥, (z). Then a nontrivial solution of the
equation

1 (1149
¥+ 47/ (ke —zler Yora=0
0

(¥ (21) = ¥y (2)) = P2 (21)s @ [t T ()] = [$a(t) +- P (t) + g, (8) + /% —
(e () + g1 (&) + 0t/ %)
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should exist.
Let us multiply (1. 14) by the function @ [z,, ¥ (z,)] and let us integrate over the
segment (0, 1). We obtain

11 1.15
A7l/e S g KM (t—2)] @ [t, ¥ (1)} ¢ [2,F (21)] dt dzy = (1. 1)
0

1
0
1
- { ¥ @)ola ¥ @) dn
0

The function @ [z;, ¥ (z;)] is positive for ¥ (z,) >0 and negative for ¥ (z)
< 0. Therefore,

1
(¥ (@)@ lo ¥ @)ldn >0, ¥i(a)#0
0
The kemel k[A(t—z)] is non-negative, i.e., the inequality
11
J(0) = S gk[x(z-—z)lm(t)m(z)dzdz>o
00

holds for any continuous function ® (z) not identically zero in the range (0,1).
Indeed, the functional J(w) can be represented in the form

J(m)=§m(z) {Slk[x(z—xn o (1) dt}dz
0 0

The expression in the braces is, as follows from (1. 3), the displacement to the
accuracy of a positive constant, which the boundary of the strip will undergo on the
contact area under the effect of the distributed load ® (z). Therefore, the function-
al J(w) is, to the accuracy of a positive factor, the total work produced by the arb-
itrary pressures © (z) on the appropriate displacements of points of the contact area,
which is always non-negative, By virtue of the non-negativity of the kemel, the left
side of (1, 15) is non-negative. Therefore, (1.5) is valid if and only if ¥ (z,)=0.

By knowing the solution of (1. 11) as the limit of the sequence of functions ¥, (z),
the pressure in dimensionless coordinates can be found by means of (1. 10). The sett-
lement 1 of the stamp is found from (1.9).

Let us note that the pressure cannot be infinite at the ends of the contact area.
Indeed, by assurning that the pressure has an integrable power singularity of the form
2,79 (0 << 6 << 1) at the point z, =, 0, and taking into account that the kemnel
of the integral equation (1.8) has a singularity of the form ln x,, we obtain that the
left side in (1.8) has a singularity of the order of ,7%9, while there is no singularity
in the right side, which proves the assertion mentioned above.

In the case of a smooth stamp making contact with a rough elastic layer an addit-
ional condition p (—a) = p (@) = 0 expressing the continuity of the function for
the pressure on the boundary of the elastic layer, exists to determine the unknown
boundaries of the contact area {(—a, a) .

2, Different plane contact problems for a rough layer can be solved by the method
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elucidated in Sect.1by determining the nature of the pressure distribution on the bound-
ary of the rough layer as a function of the layer thickness, the roughness parameters,
the elastic characteristics of the layer, etc,

As an illustration of a contact problem, let us consider the frictionless impression
of a rigid stamp with a flat base g (z) = 0 in a thick rough layer. In this case, we
have the integral equation (1.8) and the condition (1, 9) in which g, {z) = 0 to de-
termine the pressure and the kernel is representable in the form

E@)= —ln{t]+aq
where a2, = —0.352 for the first boundary value problem, and a, = —0.527 for
the second boundary value problem. Such an asymptotic representation of the kemel
(1.4) is valid for sufficiently thick strips when A= [22/BPP =0 (1) [10],

By solving (1, 8) by successive approximations under these conditions, we obtain
for the pressure on the contact area

(@) = A7V [p(zy) + /%
where ¥ (z;) is the limit of the sequence of functions {1, (z;)} and

]
Py 4y (@) = A;"‘“S [t —zy |+ el [¥, (8) + 0]t/ *de
1)

¢o=In{(2a/ h) — a,

This limit exists if condition (1. 13) is satisfied, which takes the following form
in this case
Q 2AP AR A (o2 3 1 3.5) <1

On the basis of results of experimental investigations {6, 7], the following values

of the dimensionless parametens were taken for the numerical computations: a = 0.4,

A;=1, ¢o= —3. Graphs of the pressre distribution in the case of the dimen-
sionless loads Py’ = 0.6.10~% and P,/¥ = 0.75.10~2 acting on the stamp are repres-
ented by curves I and 2, respectively, in Fig, 1. The valuesof P, are related
to the tiue load values by the last formula in (1.7). The depths corresponding to the
loads Py and P,'¥ are 3 = 0.15, n® = 0.17, where n = 8/ (2q¢). Asis
seen from the graph, the pressure increases under the effect of the larger load, espec-
ially at the ends of the contact area, Under the effect of identical 0.41-10~% foads,
the depth of the stamp and the pressure under it will vary, as computations showed,

as a function of the smoothness of the surface treatment, which is characterized by
the dimensionless parameters ¢ and 4, For a =04 and 4; =075 the stamp
penetrates to a depth n = 0.1, while for « = 0.4 and 4, = 0.35 (smoother treat-
ment), the stamp penetrates a smaller amount v = 0.06. Graphs of the presre dis-
tribution in these two cases are shown by curves 7 and 4 in Fig. 1, respectively: a
graph of the pressure distribution without taking account of the roughness is presanted
by the dashed line, The computations exhibited satisfactory convergence of the me-
thod of successive approximations and its effectiveness. To 107 accuracy it tum-
ed out to be sufficient to calculate 15 —20 approximations of the function ¥ (). The
process converges for practically all reasonable values of the roughness parameters
and the elastic characteristics of the material.
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3, Letus examine the axisymmetric problem of impressing a circular stamp in a
rough elastic haif-space (y << 0). The shape of the stamp surface making contact
is given by the equation ¥ = g (p) (g (0) = 0). A force P presses the stamp in-
to the half-space, The contact area is in the shape of a circle of radius a. The
normal displacements of the elastic half-space boundary in the contact region, defin-
ed by the shape of the stamp and its settlement 8, are comprised of elastic displace-
ments at points of the half-space boundary  v,, which are determined according to
[10] on the basis of the boundary conditions

a
Vg = 1—vZS p(ryrdrdg
p Vﬁﬁﬁﬁmﬁ$

nE

Oe,/w‘j

{p (r) is the distribution function of the contact pressures), and the displacements
v, due to deformation of the microprojections, which are determined by (1. 2).
Let us write the condition for contact between the stamp and the half-space bound-
ary and the equilibrium condition in dimensionless coordinates in canonical form. To
do this we introduce the notation

n=Le, ) = P(io) gi(r) = g -
8 A nE o 1~—v’
= Al:T[T—'ITz]’ Pr=—gz P

Y (py) = A, Ip; (p)1* — g1 (p)) — M
We then obtain

. (3.1
A S k (1, ) 11 19 () + g1 (1) + n1tdrs + $ (p2) = 0

0
n

— %
klrued = § YVt pi® — 2ryp; COS §

1
P,=2n S p(r)ridry
0

As in Sect, 1, we will solve the equation of Hammerstein type (the first equation
in (3, 1)) by successive approximations, The kernel £ (r;, p,) of the integral equat-
ion (3. 1) evidently belongs to the class  L,.. It can also be confirmed that the fun-

ction Frou) = A7 a4 g () + Mo, w0
uniformly satisfies the Lipschitz condition
[f(r wy) —f(r, uy) [<ec(r)u, —u
¢(r) = adr"*r (g, () + np/e-

and that the function f (r, 0) = A,/ r [g, (r) + n]"* belongs to the class L,.
Hence, upon compliance with the inequality
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11
a 2477 { § 02 (g1 (0) + mia—2k? (r, p)drdp < 1
00

the sequence of functions {{ (p,)} will converge almost everywhere to the solution
of (3,1) [11]. The proof of the uniqueness of the solution is carried out analogously to
the proof executed in Sect. 1,

f ‘ l 0.5 T
A1 ] A I
2
5 ! /
0.5 X 4/#‘—‘ 0.3 ——
\

\;\ // ///
02 — T

2.2 06w, b7 2.8 PR

Fig.1 Fig.2

As an illustration, let us consider the numerical solution of a problem on impress-
ing a circular cylindrical stamp with a flat base g (p) = O into a rough elastic half-
space. The following numerical values were taken for the dimensionless parameters:
a=0.4,4;=09,nm=041. To 10-® accuracy in the solution it turns out to be
sufficient to evaluate 12 approximations of the function ¥ (z). The graph obtained for
the function py (r)) representing the dimensionless pressure is presented in Fig, 2.
The graph of the pressure distribution under the stamp is given by the dashed line when
roughness of the base is not taken into account, In both cases a load of P = 0.8625-
10-2 acts on the stamp,
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